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Regimes of near-inertial wave dynamics

Scott Conn1,†, Jörn Callies1 and Albion Lawrence1,2

1California Institute of Technology, Pasadena, CA 91125, USA
2Brandeis University, Waltham, MA 02453, USA

(Received 2 July 2024; revised 27 November 2024; accepted 3 December 2024)

When atmospheric storms pass over the ocean, they resonantly force near-inertial waves
(NIWs), internal waves with a frequency close to the local Coriolis frequency f . It has
long been recognised that the evolution of NIWs is modulated by the ocean’s mesoscale
eddy field. This can result in NIWs being concentrated into anticyclones which provide
an efficient pathway for NIW propagation to depth. Here we analyse the eigenmodes of
NIWs in the presence of mesoscale eddies and heavily draw on parallels with quantum
mechanics. Whether the eddies are effective at modulating the behaviour of NIWs depends
on the wave dispersiveness ε2 = fλ2/Ψ , where λ is the deformation radius and Ψ is a
scaling for the eddy streamfunction. If ε � 1, NIWs are strongly dispersive, and the waves
are only weakly affected by the eddies. We calculate the perturbations away from a uniform
wave field and the frequency shift away from f . If ε � 1, NIWs are weakly dispersive, and
the wave evolution is strongly modulated by the eddy field. In this weakly dispersive limit,
the Wentzel–Kramers–Brillouin approximation, from which ray tracing emerges, is a valid
description of the NIW evolution even if the large-scale atmospheric forcing apparently
violates the requisite assumption of a scale separation between the waves and the eddies.
The large-scale forcing excites many wave modes, each of which varies on a short spatial
scale and is amenable to asymptotic analysis analogous to the semi-classical analysis of
quantum systems. The strong modulation of weakly dispersive NIWs by eddies has the
potential to modulate the energy input into NIWs from the wind, but we find that this
effect should be small under oceanic conditions.
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1. Introduction

Near-inertial waves (NIWs) play an important role in the global climate system. Being
associated with strong vertical shears, they are prone to shear instabilities, which are an
important driver of upper ocean mixing (for a review, see Alford et al. 2016). As such,
the generation of NIWs is one of the primary mechanisms by which atmospheric storms
induce a deepening of the surface mixed layer. This deepening requires mixing with water
from below, implicating NIWs in the surface ocean heat budget (Jochum et al. 2013).
In the interior of the ocean, NIWs make up a major fraction of the internal wave kinetic
energy (Ferrari & Wunsch 2009; Alford et al. 2016), and it has been hypothesised that NIW
kinetic energy may provide a source of mixing in the deep ocean (Munk & Wunsch 1998).
Near-inertial waves might also extract energy from mesoscale eddies (Xie & Vanneste
2015; Rocha, Wagner & Young 2018) and, hence, play a role in the mesoscale energy
budget.

In-situ observations of NIWs usually lack significant spatial resolution. The spatial
structure of NIWs can generally only be resolved through dedicated field campaigns, for
example, the Ocean Storms experiment (D’Asaro 1985) or the NISKINe field campaign
(Voet et al. 2024). Despite this, it has become clear that NIW evolution can be strongly
modulated by the presence of mesoscale eddies (e.g. Thomas et al. 2020; Conn, Fitzgerald
& Callies 2024). Given the sparsity of NIW observations, theoretical progress has been
important in understanding the dynamics of NIWs in the upper ocean.

Early work on NIW–eddy interactions was based on ray tracing theory. Kunze (1985)
derived a dispersion relation for NIWs in the presence of a geostrophic background flow.
Throughout this paper, we make the assumption of a barotropic (depth-independent)
background flow. The ray tracing equations for a single (flat-bottom) baroclinic mode
propagating through such a background flow are

dx
dτ

= ∂ω

∂k
,

dk
dτ

= −∂ω
∂x
, ω = fλ2|k|2

2
+ u · k + ζ

2
, (1.1a–c)

where x = (x, y) is the ray position, τ is time, k is the horizontal wave vector, u is the
background velocity, ζ = ∂xv − ∂yu is the background vorticity and λ is the deformation
radius. Here, and throughout the rest of this paper, ω refers to the frequency shift of
a NIW away from the local inertial frequency f such that the true frequency is f + ω.
Based on these equations, Kunze (1985) argued that NIWs would be trapped in regions of
anticyclonic vorticity where the effective frequency is less than the local f . This trapping
arises from the refraction of rays by the background vorticity, i.e. from changes in the
wavenumber vector due to spatial gradients of the ζ/2 term in the dispersion relation.
Concentration of NIW energy into anticyclones has indeed been observed in the ocean
(e.g. Perkins 1976; Kunze & Sanford 1984; Thomas et al. 2020; Yu et al. 2022).

Ray tracing is based on the assumption that the NIWs are propagating through a slowly
varying medium. This means that the horizontal scale of the waves has to be much smaller
than the scale of the background mesoscale eddy field. Young & Ben Jelloul (1997, from
hereon YBJ) criticised this spatial scale assumption based on the argument that NIWs are
forced by large-scale storms and so, at least initially, the waves have a much larger scale
than mesoscale eddies. As a remedy, YBJ developed a theory of NIW–eddy interactions
that does not rely on the assumption of a spatial scale separation. This was also partly
motivated by a desire to explain observations from the Ocean Storms experiment (D’Asaro
et al. 1995), a field campaign that studied the evolution of NIWs in the wake of a large
storm in the North Pacific. A key result of this campaign was that the effect of the
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Regimes of near-inertial wave dynamics

mesoscale vorticity on the wave evolution was in clear contradiction with predictions from
ray tracing (D’Asaro 1995).

The YBJ equation describes the evolution of NIWs in the presence of a prescribed
geostrophic eddy field while only assuming a temporal scale separation between the
inertial period and the characteristic time scale of the eddies. For the barotropic
background flow considered throughout this paper, the wave evolution can be split into
baroclinic modes that do not interact, so we consider a single baroclinic mode with NIW
velocity [uw(x, y, t), vw(x, y, t)]g(z), where g(z) is the baroclinic mode structure. The YBJ
equation is cast in terms of the variable φ = (uw + ivw)eift, where the factor eift removes
oscillations at the inertial frequency and leaves φ to describe the slow evolution of the
envelope that modulates the NIWs. For a single mode propagating through a barotropic
background flow, the equation becomes

∂φ

∂t
+ J(ψ, φ)+ iζ

2
φ − ifλ2

2
∇2φ = 0, (1.2)

where ψ is the background streamfunction, ζ = ∇2ψ is the background vorticity and
J(a, b) = ∂xa ∂yb − ∂ya ∂xb is the Jacobian operator. The second term describes advection
of the NIW field by the background flow. The third term is known as the ζ -refraction
term and describes refraction of the NIW field by the background vorticity. This term
is necessary to obtain concentration of NIWs into regions of anticyclonic vorticity. The
last term is responsible for wave dispersion. Here and throughout this paper, we set the
meridional gradient of planetary vorticity β = 0. The YBJ equation can be modified
to include β by replacing ζ/2 with ζ/2 + βy in the refraction term. The β effect has
been proposed to explain the observed equatorward propagation of NIWs in the ocean
(Anderson & Gill 1979; Garrett 2001; Yu et al. 2022), and it can dominate the overall
NIW evolution in regions with weak mesoscale eddies (e.g. D’Asaro et al. 1995). Because
mesoscale vorticity gradients typically dominate over β however, we here restrict ourselves
to β = 0 for simplicity.

Despite both ray tracing and the YBJ equation being used in the NIW literature, it
remains unclear how they relate to each other. Ray tracing has been one of the most widely
used tools to interpret observations of NIWs. Ray tracing has had qualitative success in
describing observed features of NIW evolution, however, we are not aware of any rigorous
comparisons between ray tracing predictions and observations. Ray tracing has revealed
aspects of NIW dynamics such as trapping in anticyclones along with an associated
propagation to depth (Jaimes & Shay 2010), stalling in cyclones (Oey et al. 2008) and the
interplay between NIWs and turbulent dissipation (Kunze, Schmitt & Toole 1995; Essink
et al. 2022). Non-standard propagation patterns of NIWs in observations have also been
explained using ray tracing (e.g. Byun et al. 2010; Chen et al. 2013). The YBJ equation
has been used primarily as a tool in theoretical and numerical studies, although there has
been some attempt to make connections with observations. Asselin & Young (2020) used
simulations of the YBJ equation coupled to a quasi-geostrophic mesoscale eddy field to
investigate the sequence of events that lead to the downward propagation of wind-forced
NIWs. Thomas et al. (2020) calculated the NIW wave vector using an expression based on
the YBJ equation. The predictions from YBJ were broadly in agreement with observations.
Conn et al. (2024) directly used the YBJ equation to interpret NIW observations on a
mooring array, showing that it successfully captured the amplitude and phase evolution,
including differences across the mooring array caused by mesoscale vorticity gradients.
Any comparison of the results of these disparate studies is complicated by the different
methods used. A better understanding of the relationship between ray tracing and YBJ
would clarify the physical similarities and differences.

1002 A22-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1175


S. Conn, J. Callies and A. Lawrence

Further complicating the picture, observations reveal a varied picture of the importance
of the mesoscale vorticity on NIW evolution. During the Ocean Storms experiment,
mesoscale eddies had a muted impact on the NIW field (D’Asaro 1995), whereas other
observational studies found a strong imprint of mesoscale eddies onto the NIW field. For
example, Thomas et al. (2020) demonstrated that the evolution of the NIW wave vector
was driven by gradients in the mesoscale vorticity during the NISKINe experiment in the
North Atlantic. Extending the original argument by YBJ, Thomas et al. (2024a) argued
that these differences in the impact of mesoscale vorticity could be explained primarily by
differences in the strength of wave dispersion. The stronger dispersion in the Ocean Storms
experiment, they argued, was the result of the forcing projecting onto lower baroclinic
modes, a stronger stratification and weaker eddies. As a result, the effect of refraction by
mesoscale vorticity was suppressed in the Ocean Storms experiment, whereas it was more
pronounced in NISKINe.

In this paper we aim to clarify how ray tracing relates to YBJ dynamics. Given the
widespread use of ray tracing in the literature, we aim to understand the conditions under
which results from ray tracing are accurate. To this end, we consider the YBJ equation in
both a strong- and weak-dispersion regime. We begin by providing a simplified treatment
of the strong-dispersion regime. Next, we show that the ray tracing equations emerge
asymptotically from the YBJ equation in the limit of weak dispersion. Our analysis shows
that the Wentzel–Kramers–Brillouin (WKB) approximation and, thus, ray tracing can be
valid even in the presence of a large-scale forcing, despite the YBJ critique. The forcing
decomposes into several modes that themselves exhibit small-scale structure. We find
the existence of isotropic and anisotropic modes. The isotropic modes are characterised
by fast variations along streamlines, while the anisotropic modes have weak variations
along streamlines. We discuss the physical processes important in both classes. Finally,
we consider how these regimes might modulate the energy injection into the NIW band by
the winds, finding that such a modulation is likely weak under oceanic conditions.

2. The YBJ equation

2.1. Decomposition into horizontal modes
We begin by non-dimensionalising the YBJ equation. Given the scalings x, y ∼ L, ψ ∼ Ψ

and t ∼ L2/Ψ , we obtain the following non-dimensional form of the YBJ equation:

∂φ

∂t
+ J(ψ, φ)+ iζ

2
φ − iε2

2
∇2φ = 0. (2.1)

Here ε2 = fλ2/Ψ is the wave dispersiveness (assuming f > 0). For readers familiar with
Young & Ben Jelloul (1997), our ε2 is equivalent to their Υ −1. We remind the reader
that we have assumed a single baroclinic mode, but ε does vary among baroclinic modes
through λ. The wave dispersiveness also varies spatially throughout the ocean (figure 1).
We calculate ε for the first four baroclinic modes from observations as described in
Appendix A. Except for the high latitudes, the first and second baroclinic modes are
almost entirely in the strongly dispersive regime (ε � 1). Higher baroclinic modes are
to be more weakly dispersive, with ε < 1 almost everywhere for mode 4. For a given
baroclinic mode, low-latitude regions are more strongly dispersive, while higher latitudes
and western boundary currents are more weakly dispersive.

Note that (2.1) is a Schrödinger equation. This parallel is made clear if we write (2.1) as

i
∂φ

∂t
= Hφ, H = −ε

2

2
∇2 − i J(ψ, ·)+ ζ

2
. (2.2a,b)
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Figure 1. Wave dispersiveness ε2 = | f |λ2/Ψ plotted throughout the ocean for the first four baroclinic modes,
with the deformation radius λ estimated from hydrography and the streamfunction magnitudeΨ from altimetry.
The equatorial band is blocked out because the mean flow amplitude cannot be estimated with confidence there.

The operator H is known as the Hamiltonian operator. While the presence of first
derivatives in the Hamiltonian stemming from advection may be unfamiliar to some,
such terms arise in quantum mechanics when describing a charged particle in a magnetic
field. This analogy to quantum mechanics was pointed out by Balmforth, Llewellyn Smith
& Young (1998) and we will exploit it here extensively. Rocha et al. (2018) also used
this analogy to derive the equivalent of Ehrenfest’s theorem for NIWs, while Danioux,
Vanneste & Bühler (2015) explained the concentration of NIWs into anticyclones via the
analogue of quantum conservation laws. While we are setting β = 0 in this paper, we note
that the quantum analogue to β /= 0 is known as the ‘Wannier–Stark ladder’, where the
potential due to the mesoscale vorticity modulates a linear ramp due to β (Balmforth &
Young 1999).

The operator H is Hermitian, i.e.∫
ϕ∗Hφ d2x =

∫
(Hϕ)∗φ d2x (2.3)

for sufficiently regular functions ϕ and φ so it has real eigenvalues. We also assume H
is compact so that the eigenmodes form a complete orthonormal basis. Let μ label the
eigenmodes φ̂μ(x, y) and associated eigenvalues ωμ of the operator H,

Hφ̂μ = ωμφ̂μ. (2.4)

The field φ can then be expanded in the eigenmode basis as

φ(x, y, t) =
∑
μ

aμ(t)φ̂μ(x, y), (2.5)
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Figure 2. Dipole vorticity with an anticyclone in the upper left corner and a cyclone in the lower right corner.
The contours depict the streamfunction with positive values denoted by solid lines and negative values denoted
by dashed lines.

where aμ(t) is the projection of φ onto the eigenmode φ̂μ. The coefficients aμ(t) then
evolve according to

daμ

dt
= −iωμaμ, so aμ(t) = aμ(0) exp(−iωμt). (2.6)

Therefore, the eigenvalue ωμ represents the frequency shift of the mode away from f .
The total dimensional NIW frequency is hence given by f (1 + Roωμ), where Ro = Ψ/fL2

is the Rossby number. Furthermore, because the eigenvalues are real and the modes are
orthogonal, the kinetic energy of the waves is conserved.

We consider this problem on a doubly periodic domain with size 2π × 2π. This is
intended to represent a local view of an ocean that is filled with a random sea of eddies.
The solutions we calculate are perfectly periodic and extend across all eddies. In reality,
of course, the background field is not perfectly periodic and this causes the solutions to
become localised in certain regions. Therefore, the solutions we calculate on the 2π × 2π
should be thought of similarly.

As a key example in this paper, we consider a 2π × 2π domain that contains a dipole
vortex given by (figure 2; cf. Asselin et al. 2020)

ψ = 1
2 (sin x − sin y) . (2.7)

The analysis below is general, however, and can be applied to more general background
flows.

2.2. Numerical calculation of eigenvalues and eigenmodes
For most choices of the background flow ψ , analytical solutions for the eigenfunctions
of H do not exist and numerical solutions are required. Solving the eigenvalue equation
numerically requires us to discretise the operator H. The discrete eigenfunction is
expressed as a vector, and the problem reduces to finding the eigenvalues of a finite matrix.
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Regimes of near-inertial wave dynamics

The operator H is Hermitian and so it is desirable for any discrete representation of H
to also be Hermitian. A fourth-order central finite difference scheme for the Laplacian
term preserves this property. More care is required for the advection operator, for which
we use the enstrophy-conserving scheme from Arakawa (1966) to preserve the Hermitian
nature of the operator and guarantee that the eigenvalues of the matrix are real. Having real
eigenvalues ensures that the conservation of NIW kinetic energy is respected in the discrete
system. The exact method of numerically solving the eigenvalue problem is detailed in
Appendix B.

3. The strong-dispersion limit

The limit ε � 1 is known as the strong-dispersion limit. Young & Ben Jelloul (1997)
showed that in this limit, the solution to the YBJ equation becomes proportional to
the streamfunction ψ . They additionally showed that frequency shifts away from f are
proportional to the domain-averaged kinetic energy of the mesoscale flow. These same
results can be derived by considering the eigenvalue problem posed above; see (3.8) and
(3.11) for the result. In our framework, we can additionally derive information about the
next-order perturbations to the NIW field; see (3.15) and (3.16) below.

When ε is large, we split the operator H into two parts, i.e.

H = ε2H(0) + H(1), (3.1)

where H(0) = −1
2∇2 and H(1) = 1

2ζ − i J(ψ, ·). Because ε2 � 1, this implies that H(1) is
a small correction to ε2H(0), and perturbation theory can be used to solve this system. We
expand both φ̂μ and ωμ in powers of ε−2:

φ̂μ =
∞∑

n=0

ε−2nφ̂(n)μ , ωμ = ε2
∞∑

n=0

ε−2nω(n)μ . (3.2a,b)

At O(ε2) the eigenvalue problem is

H(0)φ̂(0)μ = ω(0)μ φ̂(0)μ , (3.3)

where φ̂
(0)
μ is the eigenfunction of the unperturbed problem with eigenvalue ω

(0)
μ .

We assume the domain is doubly periodic and goes from 0 to 2π in x and y. The solution
is

φ̂(0)μ = eiμ·x, ω(0)μ = |μ|2
2
, (3.4a,b)

where μ is a two-dimensional vector with integer components, such that the eigenfunctions
are plane waves in x and y.

3.1. The leading-order mode
Near-inertial waves are forced by atmospheric storms, which have a much larger horizontal
scale than mesoscale eddies and can be idealised as a uniform forcing. We assume that the
result of this forcing is the excitation of a constant non-zero φ. The projection of this initial
condition onto a given mode can thus be found by integrating that mode across the domain.
For plane waves, a domain integral will vanish unless μ = 0, such that a uniform forcing
will only project onto the μ = 0 mode in the unperturbed case. We begin by focusing on
that case to obtain expressions for the perturbations to its spatial structure as well as its
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frequency shift. A small part of the forcing, however, projects onto modes with μ /= 0 and
we will return to these higher modes below.

The leading-order solution for μ = 0 is φ̂(0)0 = 1 and ω
(0)
0 = 0, and there is no

modulation of the waves by the mesoscale eddy field. To obtain this modulation, we must
go to higher order. At O(ε0), the eigenvalue problem is

H(0)φ̂
(1)
0 + H(1)φ̂

(0)
0 = ω

(0)
0 φ̂

(1)
0 + ω

(1)
0 φ̂

(0)
0 . (3.5)

With ω(0)0 = 0 and the advection term in H(1) vanishing when acting on φ̂(0)0 = 1, this
reduces to

−1
2
∇2φ̂

(1)
0 + ζ

2
= ω

(1)
0 . (3.6)

The two terms on the left vanish when integrated over the doubly periodic domain, so we
conclude that ω(1)0 = 0.

There is, however, a correction to the eigenfunction at this order, determined by

∇2φ̂
(1)
0 = ∇2ψ. (3.7)

With periodic boundary conditions, the solution to this is

φ̂
(1)
0 = ψ, (3.8)

where we have assumed that ψ is defined such that it has zero domain average. This
recovers the expression for φ̂ from YBJ. The structure of the mesoscale eddy field is
imprinted onto the waves by the ε−2φ̂

(1)
0 term. Because the modulation is by the real

streamfunction ψ , only the NIW amplitude is modulated by mesoscale eddies. The NIW
field remains in phase across the domain.

We now also seek the leading non-zero correction to the eigenvalue, for which we go up
another order. The eigenvalue equation at O(ε−2) is

H(0)φ̂
(2)
0 + H(1)φ̂

(1)
0 = ω

(0)
0 φ̂

(2)
0 + ω

(1)
0 φ̂

(1)
0 + ω

(2)
0 φ̂

(0)
0 . (3.9)

With ω(0)0 = ω
(1)
0 = 0 and J(ψ,ψ) = 0, this simplifies to

−1
2∇2φ̂

(2)
0 + 1

2ψ∇2ψ = ω
(2)
0 . (3.10)

The first term on the left vanishes under domain integration. Integrating the second term
on the left by parts yields

ω
(2)
0 = −1

2

∫
|∇ψ |2 d2x∫

d2x
. (3.11)

The leading-order frequency shift is ε−2ω
(2)
0 . Given that ε−2 � 1, the frequency shift

away from f is suppressed substantially, even compared with the small frequency shift
assumed from the outset. Re-dimensionalising the expression results in

ω
(2)
0 = − 1

2f0λ2

∫
|∇ψ |2 d2x∫

d2x
. (3.12)

This agrees with the YBJ result for the dispersion relation in the strong-dispersion regime,
indicating that the frequency shift is proportional to the average kinetic energy of the eddy
field.
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Regimes of near-inertial wave dynamics

3.2. Higher-order modes
We now return to the higher modes with μ /= 0. These modes are degenerate to leading
order. For example, the modes (1, 0), (−1, 0), (0, 1) and (0,−1) all have ω

(0)
μ = 1

2 .
Degenerate perturbation theory is necessary to calculate the first-order corrections to
the eigenvalues and eigenfunctions (e.g. Sakurai & Napolitano 2020). To obtain these
corrections, we proceed naively with the calculation. We will run into a contradiction that
motivates us to choose a different basis set than was chosen in (3.4a,b). To those familiar
with degenerate perturbation theory, this may seem unnecessary, but we believe it to be
more pedagogical.

We again start from the O(ε0) equation, which now reads

H0φ̂
(1)
μ + H1φ̂

(0)
μ = ω(0)μ φ̂(1)μ + ω(1)μ φ̂(0)μ . (3.13)

Multiplying this equation by φ̂(0)∗ν , with both ν and μ labelling one of the modes in the
degenerate group, and integrating over the domain results in∫

φ̂(0)∗ν

(
H0 − ω(0)μ

)
φ̂(1)μ d2x = ω(1)μ

∫
φ̂(0)∗ν φ̂(0)μ d2x −

∫
φ̂(0)∗ν H1φ̂

(0)
μ d2x. (3.14)

Using integration by parts, the H0 on the left can be swapped for ω(0)ν . Because the
modes are degenerate to this order, the left-hand side vanishes. Furthermore, using the
orthonormality of the eigenfunctions, the corrections to the eigenvalues are determined by

ω(1)μ δνμ = 1
4π2

∫
φ̂(0)∗ν H1φ̂

(0)
μ d2x. (3.15)

We have now arrived at our contradiction. The left-hand side of this equation is diagonal,
whereas the right-hand side is not necessarily so. In (3.4a,b) we chose a basis for
the unperturbed eigenfunctions: {eix, e−ix, eiy, e−iy} for |μ| = 1. The key to degenerate
perturbation theory is to choose a basis of the degenerate space to avoid this contradiction.
It is clear that the correct basis must diagonalise H1, which our original choice does not.

To proceed, we calculate the right-hand side of (3.15) in the original basis. This results in
a 4 × 4 matrix. We diagonalise this matrix and find the corresponding linear combination
of the original basis functions that diagonalises H1. The corresponding eigenfunction
corrections can be found by solving the screened Poisson equation obtained from the
first-order equation (3.13). Rearranging, we have(

H0 − ω(0)μ

)
φ̂(1)μ =

(
ω(1)μ − H1

)
φ̂(0)μ , (3.16)

where the φ̂(0)μ should be in the basis diagonalising H1. If H1 identically vanishes in this
subspace, the degeneracy must be lifted at the next order, as in the example below.

3.3. Dipole flow solutions
We now consider the specific example of the dipole flow (2.7). Numerical solutions
for ε = 2 show that a uniform initial condition projects strongly (98.5 % of the
energy) onto the φ̂0 mode (figure 3). There is a small but negative frequency shift
of ω0 = −0.03104. This agrees excellently with the predicted frequency shift from
(3.11) of ε−2ω

(2)
0 = 1

32 = −0.03125. Additionally, there is weak horizontal structure that
aligns with the streamfunction as expected. The root-mean-squared error between the
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Real part of eigenfunction φ̂
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Figure 3. Numerical solution to the eigenvalue problem (2.4) with ε = 2 for the dipole flow. A uniform forcing
primarily projects onto the mode shown on the left, with the mode with the second-highest projection shown
on the right only making up less than 2 % of the energy. The eigenvalues ω and projection fractions (of energy)
are shown in the panel titles. Vectors show the corresponding NIW velocities.

numerical eigenmode and the analytical eigenmode φ̂(0)0 + ε−2φ̂
(1)
0 = 1 + ε−2ψ is 1 %.

The agreement is excellent despite ε not being particularly large.
For the dipole flow, the right-hand side of (3.15) is zero for all combinations of basis

functions of the ω(0)μ = 1
2 subspace. Therefore, there are no first-order frequency shifts,

ω
(1)
μ = 0, and the degeneracy is not lifted at this order. Performing the same procedure

that led to (3.15) on the second-order equation yields

ω(2)μ δνμ = 1
4π2

∫
φ̂(0)∗ν H1φ̂

(1)
μ d2x. (3.17)

For our trial basis consisting of the four plane waves, we solve the screened Poisson
equation (3.16) for the corresponding φ̂

(1)
μ . This is tedious but doable because the

right-hand side is just a sum of sines and cosines. The equation for the second-order
frequency shift can be diagonalised, and this time the eigenvalues are not zero and
the degeneracy is lifted. We find for ω(2)μ the values − 1

96 , − 7
96 , −49

96 and −55
96 , only

the first of which corresponds to an eigenfunction that the forcing projects onto at
this order. The leading-order eigenfunction of that mode is φ̂(0)μ = −ψ (figure 3).
The eigenvalue ε2ω

(0)
μ + ε−2ω

(2)
μ = 1.99739 is again in excellent agreement with the

numerical eigenvalue of 1.99729.
In this regime, the horizontal structure in the waves primarily arises due to φ̂

(1)
0 ,

which is suppressed by O(ε−2). There is also horizontal structure due to modes with
μ /= 0, but these are projected onto weakly; the fraction of the variance accounted for
by such a mode is O(ε−4) (Sakurai & Napolitano 2020). As such, the wave potential
energy, which depends on horizontal gradients in the wave field, is also suppressed.
Xie & Vanneste (2015) associated the generation of wave potential energy with a sink
of the background eddy kinetic energy in a process known as stimulated generation.
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Regimes of near-inertial wave dynamics

Given the weak generation of horizontal structure, stimulated generation is weak in the
strong-dispersion regime.

4. The weak-dispersion limit

The limit ε � 1 is known as the weak-dispersion limit. Because ε2 multiplies the
highest-order derivative in the eigenvalue equation, the limit ε → 0 is a singular
perturbation problem. Before addressing the general problem, we build intuition with
two simple examples. These examples suggest that there are two classes of modes. One
class is characterised by waves that vary slowly along the streamlines of the background
flow and more rapidly across streamlines; they are captured by an anisotropic scaling of
the wavenumber with ε. The other class has even faster variations in both directions and
requires an isotropic scaling. We develop a uniformly valid approximation that captures
both of these classes.

4.1. Parallel shear flow
We begin with an example of a parallel shear flow in which the streamfunction ψ is a
function of x only. The symmetry in y means the problem reduces to a one-dimensional
eigenvalue problem. Balmforth et al. (1998) considered this problem for a specific example
of a shear flow that can be solved in closed form. Zhang & Xie (2023) considered the
limits of strong and weak dispersion for the same mean flow. Here, we address how
the weak-dispersion limit can be analysed for a general parallel shear flow and apply the
procedure to the example flow from Balmforth et al. (1998). Our goal is to calculate the
structure of the eigenmodes and their corresponding eigenvalues. We begin by introducing
the WKB method from which the two scalings arise. For the anisotropic scaling, the key
result is (4.8); for the isotropic scaling, the equivalent result is (4.12).

We assume that the streamfunction ψ(x) is periodic on the domain [−π,π]. The
eigenvalue problem (2.4) reduces to

−ε
2

2
∇2φ̂ − iv

∂φ̂

∂y
+ ζ

2
φ̂ = ωφ̂, (4.1)

where ζ = ∇2ψ and v = ∂xψ are both functions of x only, and we have suppressed the
label on the eigenmode. The coefficients are independent of y, which motivates the ansatz
φ̂ = Φ(x)eimy. Given that the domain has width 2π in y, the wavenumber m must be an
integer. With this ansatz, we are left with the one-dimensional eigenvalue problem

−ε
2

2
d2Φ

dx2 +
(
ε2m2

2
+ mv + ζ

2

)
Φ = ωΦ. (4.2)

This is the Schrödinger equation of a particle in one-dimensional potential, with the
bracketed term playing the role of the potential (Balmforth et al. 1998).

As ε is small, WKB analysis can be used to find approximations to the eigenvalues and
eigenfunctions (e.g. Bender & Orszag 1999). In WKB theory the field Φ is expanded as

Φ(x) = exp
1
δ

∞∑
j=0

δ jSj(x), (4.3)
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where δ � 1 is a scaling parameter that we are yet to determine. Substituting this into
(4.2) yields

−ε
2

2

⎡
⎢⎣ 1
δ2

⎛
⎝ ∞∑

j=0

δ j dSj

dx

⎞
⎠

2

+ 1
δ

∞∑
j=0

δ j d2Sj

dx2

⎤
⎥⎦ + ε2m2

2
+ mv + ζ

2
= ω. (4.4)

If we assume that m ∼ O(1), both the refraction term and the advection terms are
O(1), and they must be balanced by a dispersion term of the same order. Requiring the
lowest-order dispersion term to be O(1) implies that δ = ε, and the O(1) equation becomes

−1
2

(
dS0

dx

)2

+ mv + ζ

2
= ω. (4.5)

By writing ε−1 dS0/dx = ik, this equation is analogous to the dispersion relation (1.1a–c)
specialised to this parallel shear flow. The function S0 is found to be

S0(x) = ±
√

2i
∫ x

√
ω − mv(x′)− ζ(x′)

2
dx′ (4.6)

and determines the leading-order phase variations of the solution. One can additionally
show (Bender & Orszag 1999, (10.1.12)) that the next-order solution is

S1(x) = −1
4

ln
(
ω − mv − ζ

2

)
, (4.7)

which determines the leading-order amplitude modulation of the solution.
This asymptotic expansion is valid away from regions where the integrand above is

zero. These are known as turning points of the problem and exist if ω < max(mv + ζ/2).
The associated eigenfunctions are referred to as bound states. Near turning points,
ω − mv − ζ/2 can be approximated by a linear function of x, and solutions to (4.5) are
given by Airy functions. The Airy function solutions must be asymptotically matched to
the solutions away from the turning points. This yields an integral constraint from which
the eigenvalues ω can be determined. The problem as formulated above is the classic
two-turning point problem, and the asymptotic matching procedure is well documented
(e.g. Bender & Orszag 1999, (10.5.6)). The resulting condition for ω, often referred to as
a quantisation condition, is

√
2
ε

∫ x1

x0

√
ω − mv(x)− ζ(x)

2
dx =

(
n + 1

2

)
π, with n = 0, 1, . . . , (4.8)

where x0 and x1 are the turning points. The projection of a uniform forcing onto these
modes can also be calculated asymptotically. The domain integral of a mode is dominated
by contributions from the turning points (e.g. Bender & Orszag 1999, (10.4.24)).

If ω > max(ζ/2 + mv) then there are no turning points. The corresponding eigenmodes
are referred to as free states, and the quantisation condition is replaced by

√
2
ε

∫ π

−π

√
ω − mv(x)− ζ(x)

2
dx = 2nπ, with n = 0, 1 . . . . (4.9)

Note the lack of a half-integer shift that for bound states arises from the Airy behaviour
near turning points. The lack of turning points in the free states also means (4.6) is valid
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Regimes of near-inertial wave dynamics

across the entire domain. Because the eigenfunctions of these free states are oscillatory
in the entire domain, a uniform forcing projects only weakly onto them, and we do not
discuss them any further. We also note that the discretisation of the free states is due to the
periodic domain; they would be replaced by a continuum of modes in an infinite domain,
while the bound states would remain discrete.

Under this scaling, the WKB modes are anisotropic. We assumed m ∼ O(1), which
means that the modes’ phase varies in y on a length scale O(1). In contrast, the
leading-order phase variations in x come from ε−1S0 and, therefore, occur on a scale O(ε).
The phase varies slowly along streamlines and rapidly across streamlines. This makes
refraction and advection come in at the same order as cross-streamline dispersion.

An alternative would be to choose the scaling m ∼ O(ε−2). Repeating the WKB ansatz
requires a choice of δ = ε2 and ω ∼ O(ε−2) in order to end up with an equation of a
similar form to (4.5):

−1
2

(
dS0

dx

)2

+ ε4m2

2
+ ε2mv = ε2ω. (4.10)

With the scaling given above, each term is O(1). We can solve for S0 and the corresponding
quantisation condition for bound modes:

S0(x) = ±
√

2iε
∫ x

√
ω − ε2m2

2
− mv(x′) dx′, (4.11)

√
2
ε

∫ x1

x0

√
ω − ε2m2

2
− mv(x) dx =

(
n + 1

2

)
π. (4.12)

These modes are isotropic. The phase variations in y occur on a scale O(ε2), which is the
same as in x because phase variations in x now come from ε−2S0. This makes advection
and along-streamline dispersion come in at the same order, and it makes refraction
negligible.

Despite the different characteristics of the two scalings, they lead to similar quantisation
conditions that differ only by what terms are included. We can combine them into a
uniformly valid quantisation condition:

√
2
ε

∫ x1

x0

√
ω − ε2m2

2
− mv(x)− ζ(x)

2
dx =

(
n + 1

2

)
π. (4.13)

The ‘potential’ governing the wave evolution is therefore

V(x) = ε2m2

2
+ mv(x)+ ζ(x)

2
. (4.14)

Under the anisotropic scaling m ∼ O(1), the along-streamline dispersion term is
suppressed by a factor ε2, leaving the O(1) refraction and advection terms to dominate.
Under the isotropic scaling m ∼ O(ε−2), the advection and along-streamline dispersion
terms are enhanced by a factor ε−2 and dominate over a now negligible refraction term.
In both cases, the general equation is obtained by retaining a term that is of higher order,
which is allowed in an asymptotic theory. A uniform forcing only projects onto modes
with m = 0, so all the modes projected onto are of the anisotropic variety.
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Figure 4. (a) Streamfunction and flow vectors for the shear flow example. (b) Vorticity, showing the
anticyclonic vorticity concentrated in the centre of the domain and cyclonic vorticity on the outside.
(c) Eigenvalues ω as a function of the integer wavenumber m for ε = 1

4 . The results from WKB theory (orange
crosses) are shown along with the exact eigenvalues found from numerical solutions (black circles). The WKB
results agree remarkably well with the numerical results, although there are some spurious eigenvalues near
the boundary between free and bound modes. The purple shading indicates the region where free modes exist,
which are not shown here.

We now consider a specific example of a parallel shear flow that varies sinusoidally in x:

ψ = cos x. (4.15)

This shear flow has a region of anticyclonic vorticity at the centre of the domain and
cyclonic vorticity centred on x = ±π (figure 4a,b). This is a rare example in which
the eigenvalue problem (4.2) can be solved exactly using Mathieu functions (Balmforth
et al. 1998). The generally applicable WKB theory described above accurately predicts
the eigenvalues, even for a modestly small ε = 1

4 (figure 4c). We provide the analytical
solutions to the WKB integrals in Appendix C. We also note that the symmetry of the
problem means that a uniform wind forcing only projects onto modes with even n.

For m = 0, the eigenmodes are shaped by the potential V = ζ/2 (figure 5a). Where
ω > V , S0 is imaginary and the solutions are oscillatory; where ω < V , S0 is real and the
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Figure 5. (a) The potential V = ζ/2 (black line) of the parallel shear flow for the m = 0 mode. The dashed
lines show the level of each eigenvalue ω for ε = 1

4 . The solid coloured lines represent a scaled representation
of each eigenfunction corresponding to a given eigenvalue, as identified by the colours. (b) Time evolution of
the NIW amplitude |φ| for the parallel shear flow example with ε = 1

4 , starting by a uniform field.

solutions are decaying (figure 5a). Near the anticyclonic centre of the flow, the potential is
at its lowest and all the modes are oscillatory. Moving further out into the cyclonic region,
more and more of the modes become evanescent.

The dependence of the potential on the vorticity ζ leads to trapping of NIWs in
anticyclones. The trapping arises from the dephasing of the modes that make up the
initial condition. This is analogous to the argument in Gill (1984) regarding the vertical
propagation of NIWs due to the β effect. The evolution occurs in three phases (figure 5b).
First, refraction imprints the mesoscale vorticity onto the initially uniform wave phase,
leaving the amplitude unchanged (cf. Asselin et al. 2020). Second, once these phase
gradients are sufficiently pronounced, cross-streamline dispersion becomes important
and concentrates the wave energy into the centre of the anticyclone, and the wave field
assumes a spatial scale O(ε). Third, the amplitude remains elevated on average within the
anticyclonic region but is more spread out than during the initial concentration. It is this
long-time behaviour that corresponds to the fully dephased eigenmodes. The time it takes
for this dephasing to occur depends inversely on the spacing of the eigenvalues ω. As ε
decreases, the eigenvalues become more finely spaced. The m = 0 modes have a spacing
O(ε), so it takes t ∼ O(ε−1) for them to dephase. Another way to think of this is that as ε
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decreases, dispersion becomes weaker and it takes longer for phase gradients to build up
to a level where dispersion is important.

Finally, we note that Asselin et al. (2020) discussed solutions to the YBJ equation for
which phase lines are aligned with streamlines and straining is ineffective in driving a
decrease in the spatial scale of the wave. That analysis sets the dispersion term to zero,
however, and so only captures the initial phase in which refraction dominates. The WKB
theory presented above shows that cross-streamline dispersion is of leading order and
should not be dropped if the long-term evolution is of interest (cf. figure 5b). Our m = 0
anisotropic modes can thus be understood as a generalisation of Asselin et al.’s (2020)
solution. The ineffectiveness of straining due to the alignment of the wave phase with
streamlines remains apparent, but cross-streamline dispersion is now taken into account
such that the solution remains valid at late times. We further note that our anisotropic
modes also allow for slow variations of the wave field along streamlines, such that
advection assumes the same importance as refraction and cross-streamline dispersion.
These anisotropic modes with m > 0 may be excited by a non-uniform forcing, such as
a passing atmospheric front (cf. Thomas, Smith & Bühler 2017).

4.2. Axisymmetric flow
We now consider a streamfunction with axial symmetry, such that ψ = ψ(r), where r is
the radial distance from the origin. Llewellyn Smith (1999) studied NIWs with azimuthal
wavenumber zero in an axisymmetric vortex and provided asymptotic expressions for the
frequency of the lowest radial mode. Kafiabad, Vanneste & Young (2021) studied a similar
case but also considered the impact of NIWs back on the vortex. Using WKB theory,
we consider NIWs with an arbitrary azimuthal wavenumber and provide a transcendental
equation that can be solved for their frequency as for the parallel shear flows above.

We make the ansatz φ̂ = A(r)eimθ , where θ is the azimuthal angle, and again we drop
the mode label. In polar coordinates, (2.4) then reduces to

−ε
2

2

(
d2A
dr2 + 1

r
dA
dr

)
+

(
ε2m2

2r2 + mv
r

+ ζ

2

)
A = ωA, (4.16)

where v = ∂rψ denotes the azimuthal velocity. There are some subtleties involved in
applying WKB theory to this equation. For modes with m > 0, the potential diverges at
the origin. This issue has long been noted in the quantum mechanics literature and can be
addressed by performing a so-called Langer transform on the equation. For m = 0, there
is no divergence of the potential, but there is a phase shift at the origin. As pointed out
by Berry & Ozorio de Almeida (1973), both cases turn out to give the same quantisation
condition:

√
2
ε

∫ r1

r0

√
ω − V(r) dr =

(
n + 1

2

)
π, with n = 0, 1, 2, . . . . (4.17)

Here the potential is

V(r) = ε2m2

2r2 + mv
r

+ ζ

2
. (4.18)

If m > 0, the integration bounds r0 and r1 are the two zeros of the integrand; if m = 0,
r0 = 0 and r1 is the one zero of the integrand. As in the case of a parallel shear flow,
this expression is uniformly valid in the sense that it works for both m ∼ O(1) and m ∼
O(ε−2). These again correspond to anisotropic and isotropic modes, respectively, with
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Figure 6. (a) Streamfunction and flow vectors for the axisymmetric flow example. (b) Vorticity field showing
the anticyclonic vorticity concentrated in the centre of the domain, which is flanked by a halo of cyclonic
vorticity. (c) Eigenvalues ω as a function of azimuthal wavenumber m for ε = 1

4 . The results from WKB theory
(orange crosses) are shown along with the exact eigenvalues found from numerical solutions (black circles).
The WKB approximation agrees remarkably well with the numerical results.

refraction, advection and dispersion along and across streamlines playing the same roles
as before. The only difference is that the streamlines are now circular.

We consider the concrete example of an isolated Gaussian vortex on an infinite domain:

ψ(r) = e−r2/4. (4.19)

This corresponds to an anticyclone in the centre of the domain that is surrounded by
a halo of cyclonic vorticity (figure 6a,b). Again, the WKB calculation for ε = 1

4 yields
eigenvalues that agree extremely well with the exact eigenvalues (figure 6c). The structure
of the first few modes is shown in figure 7. For m = 0, the modes are concentrated in the
anticyclone. For m > 0, there is a repulsion from the very centre of the anticyclone due to
the advection and dispersion terms in V(r). This repulsion increases with m, but the modes
remain primarily concentrated in the region of anticyclonic vorticity. The modes become
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Figure 7. Real part of the eigenfunctions for the axisymmetric flow example with ε = 1
4 . The radial

wavenumber n increases from left to right and corresponds to an increasing number of nodes in the radial
direction. The azimuthal wavenumber increases from top to bottom and corresponds to an increasing number
of nodes in the azimuthal direction.

more isotropic as m is increased. Note that again, a uniform forcing only projects onto the
m = 0 mode due to the symmetry of the vorticity field. We also note that only the bound
states form a discrete spectrum in an infinite domain, there will also be a continuum of
free modes.

4.3. General case
Based on the intuition gained above, we wish to construct a uniformly valid asymptotic
expansion for a general two-dimensional background flow. We again make a WKB ansatz
that leads to (4.23). This equation can be solved by the method of characteristics and
recovers Kunze’s ray tracing. The quantisation condition for the general case is (4.27a,b).

In analogy with the isotropic scaling, we begin by assuming a solution of the form

φ̂(x, y) = exp

⎡
⎣ 1
ε2

∞∑
j=0

ε2jSj(x, y)

⎤
⎦ , (4.20)
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Regimes of near-inertial wave dynamics

again dropping the mode label. Substituting this into (2.4) yields

− 1
2ε2

∣∣∣∣∣∣
∞∑

j=0

ε2j∇Sj

∣∣∣∣∣∣
2

− 1
2

∞∑
j=0

ε2j∇2Sj − i
ε2

∞∑
j=0

ε2j J(ψ, Sj)+ ζ

2
= ω. (4.21)

Assuming ω ∼ O(ε−2) and collecting leading-order terms, we obtain

−1
2 |∇S0|2 − i J(ψ, S0) = ε2ω. (4.22)

In the simple examples discussed above, we obtained a uniformly valid approximation by
retaining the higher-order refraction term in the leading-order equation arising from an
isotropic scaling. We do so again here:

−1
2
|∇S0|2 − i J(ψ, S0)+ ε2ζ

2
= ε2ω. (4.23)

We anticipate that the order of these terms again changes for anisotropic modes. If the
phase varies slowly along streamlines, the advection term is reduced by a factor O(ε2)
and cross-streamline dispersion, acting on spatial variations on a scale of O(ε) rather than
O(ε2), will attain the same order, whereas along-streamline dispersion becomes negligible.
Equation (4.23) can therefore capture both isotropic and anisotropic modes.

We now introduce the wavenumber vector k by writing ε−2∂S0/∂x = ik. Equation
(4.23) can be solved using the method of characteristics:

dx
dτ

= ε2k + u,
dk
dτ

= − ∂

∂x

(
u · k + ζ

2

)
, ω = ε2|k|2

2
+ u · k + ζ

2
. (4.24a–c)

These are the non-dimensionalised ray tracing equations of Kunze (1985). We further
elaborate on this connection between YBJ and Kunze’s ray tracing below.

Numerical solutions for the dipole flow show that the majority of a uniform forcing
projects onto anisotropic modes that show little structure along streamlines and vary more
rapidly across streamlines (figure 8). With ε = 1

4 there is also some projection onto modes
that show more characteristics of isotropic phase variations. The variations are more rapid,
as emerges from the isotropic scaling discussed above.

Finally, we show how approximations to the eigenvalues can be obtained in the
weak-dispersion limit when the flow problem is not separable, as it was in the cases of a
parallel shear flow or axisymmetric flow. To this end, we utilise results from the quantum
mechanics literature. Recall that the YBJ equation is equivalent to the Schrödinger
equation, with the YBJ operator

H = −ε
2

2
∇2 − iu · ∇ + ζ

2
(4.25)

playing the role of the Hamiltonian. The weak-dispersion limit corresponds to the classical
limit of the equivalent quantum system, and the ray tracing equations are the analogue
of the classical Hamiltonian dynamics. The classical Hamiltonian is obtained from H
by making the substitution ∇ �→ ik, yielding the dispersion relation in (4.24a–c). The
Hamiltonian dynamics is then

dx
dτ

= ∂ω

∂k
and

dk
dτ

= −∂ω
∂x
, (4.26a,b)

the ray tracing equations stated in (4.24a–c). The connection with the Schrödinger
equation is most easily seen in the Hamilton–Jacobi description of classical mechanics
(e.g. Bühler 2006; Sakurai & Napolitano 2020).

1002 A22-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1175


S. Conn, J. Callies and A. Lawrence

y

0

2π

π

π

π

ω = −0.379 0.174 ω = −0.154 0.224 ω = 0.029 0.289 ω = 0.144 0.011

x
2π

y

0

2π
ω = 0.198 0.13

x
0 2π

ω = 0.351 0.108

x
0 2π

ω = 0.464 0.008

x
0 2ππππ

ω = 0.489 0.028

Real part of eigenfunction φ
–3 –2 –1 0 1 2 3

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 8. Real part of the eigenfunctions of the dipole flow with ε = 1
4 . Together, these eight eigenfunctions

represent over 97 % of the energy excited by a uniform forcing. They are the eight modes with the strongest
projection and are then ordered by eigenvalue ω. The eigenvalues are shown in the top left corner and the
projections of a uniform forcing onto the eigenfunction (energy fraction) are shown in the top right corner.

The quantisation conditions derived above for separable problems, from which we
obtained good approximations of the frequency shifts ω, can be generalised to some extent
to non-separable problems like the dipole flow (figure 2). This semi-classical analysis of
a quantum system was developed by Einstein (1917), Brillouin (1926) and Keller (1958),
extending the Bohr–Sommerfeld quantum theory. The resulting approach is referred to
as the Einstein–Brillouin–Keller (EBK) method (see also Berry & Mount 1972; Percival
1977; Keller 1985). The starting point is that the rays (classical trajectories in the quantum
problem), being constrained by the invariant ω (energy in the quantum problem), trace out
invariant tori in the phase space spanned by x and k. A ray starting on such a torus will
remain on it forever. The quantisation condition selects invariant tori that correspond to
allowed bound states by insisting that phase increments along closed loops on the invariant
torus integrate to multiples of 2π. Recalling that ε−2S0 = ik, so k is the spatial gradient
of the phase and k · dx is a phase increment, the quantisation conditions read

∮
C1

k · dx = 2π

(
n + 1

2

)
,

∮
C2

k · dx = 2πm, (4.27a,b)

where n and m are integers. The contours C1 and C2 are topologically independent closed
curves on the invariant torus (figure 9a). In our example, the curve C1 passes through the
hole of the phase space torus, whereas the curve C2 goes around the hole. The two curves
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Figure 9. (a) Example of a trajectory tracing out an invariant torus for the dipole case. This torus corresponds
to n = 2, m = 0 for ε = 1

4 . The background colours show the vorticity field. The black line shows a finite-time
trajectory on the torus. The green and magenta lines represent a choice for the two invariant curves on the torus.
They are independent because no continuous deformation of one can transform it into the other. (b) Different
initial conditions result in different trajectories. This example is not bound to an invariant torus but is instead
an example of a chaotic trajectory.

are independent in the sense that neither one can be continuously deformed into the other.
There is a half-integer phase shift in the quantisation condition arising from the integral
along the curve C1 because this curve passes through two caustics, the generalisation
of a turning point, where additional phase shifts are incurred (Brillouin 1926; Keller
1958; Maslov 1972). The curve C2 encounters no caustics. The integer wavenumbers n
and m correspond to the cross- and along-streamline variations, respectively. These EBK
quantisation conditions are entirely analogous to the WKB quantisation conditions derived
above for the separable parallel shear flow and axisymmetric flow.

We apply the EBK quantisation to the dipole flow with ε = 1
4 . Our procedure closely

follows Percival & Pomphrey (1976): we find the invariant tori satisfying the quantisation
condition by writing the Hamiltonian equations in action–angle variables and employing
Newton’s method; see Appendix D for details. All eigenvalues calculated by this EBK
method show excellent agreement with the numerical values (figure 10).

As foretold by Einstein (1917), not all modes are accessible by the EBK approach. If the
system is non-integrable, trajectories in phase space can become chaotic instead of tracing
out an invariant torus (figure 9b). States corresponding to such chaotic trajectories are
not amenable to the EBK method. This ‘quantum chaos’ has received much attention in
the physics literature and has connections to random matrix theory (e.g. Gutzwiller 1992;
Stone 2005). Methods exist to estimate eigenvalues as well as their statistics (e.g. Edelman
& Rao 2005; Edelman & Sutton 2007). We do not pursue these issues any further here, in
part because a uniform forcing projects most strongly onto the regular modes accessible
with the EBK method (figure 8).

5. Relation to the ray tracing equations

The previous section made clear that the ray tracing equations of Kunze (1985) are closely
related to the YBJ dynamics. In the same way that Hamiltonian dynamics emerge in
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Figure 10. Numerical eigenvalues (black circles) and EBK eigenvalues (orange crosses) calculated for the
dipole flow with ε = 1

4 . Here EBK calculations are only shown for the sufficiently confined modes where the
invariant tori are easy to calculate. The EBK values agree with the numerical values to O(10−3).

the classical limit of the Schrödinger equation, the ray tracing equations emerge in the
weak-dispersion limit of the YBJ equation. Young & Ben Jelloul (1997) criticised Kunze’s
assumption that the waves have a smaller spatial scale than the background flow, insisting
that atmospheric forcing produces NIWs at larger – not smaller – scales than mesoscale
eddies, calling into question Kunze’s ray-theoretical description in general. The analysis
above clarifies that the spatial scale of the forcing is not what determines the applicability
of WKB. Instead, the scale on which dynamical modes vary determines whether WKB
analysis can be applied, and this spatial scale is set by how strongly dispersive the waves
are. An initially uniform wave field can be thought of as consisting of a superposition
of several modes, all varying on a small scale but combining into a uniform field. The
distinct frequencies ω of these modes make them dephase over time, and the superposition
develops the small scales of the modes.

Our analysis also provides some additional insight into the evolution of weakly
dispersive NIWs. The isotropic and anisotropic scalings show that refraction is not
always of leading-order importance. The refraction term is significant only for the
anisotropic modes. For isotropic modes, the refraction term is asymptotically weak and
the dispersion relation is dominated by advection and dispersion. A large-scale forcing,
however, will project primarily onto the anisotropic modes, as can be seen in the
specific solutions for the dipole case (figure 8). More generally, the large values of the
along-streamline wavenumber m in the isotropic case produce rapid variations that lead
to strong cancellations when calculating the projection of a uniform forcing onto these
modes. As such, only a weak projection can remain.

To help interpret observations from the NISKINe study, Thomas et al. (2020) performed
a simplified ray tracing calculation, which predicted a rapid strain-driven growth in
the wavenumber that stood in stark contrast to the data. In this region of the North
Atlantic the waves are weakly dispersive (Thomas et al. 2024a), so one may worry
that this result contradicts our conclusion that ray tracing can be deployed gainfully in
the weak-dispersion regime. Thomas et al. (2020) approximated the full wave-vector
evolution by assuming a uniform and time-independent vorticity gradient, as well as a
strain field with strain rate α and its principal axis aligned with the vorticity gradient.
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Regimes of near-inertial wave dynamics

In that set-up, the wavenumber component k⊥ that is aligned with the vorticity gradient,
i.e. perpendicular to vorticity contours, evolves according to

dk⊥
dτ

= −|∇ζ |
2

+ αk⊥, so k⊥ = −|∇ζ |
2α

(
eατ − 1

)
(5.1)

if k⊥ = 0 at time τ = 0, approximating large-scale wind forcing. The exponential growth
predicted by this equation does not match the data. Our analysis suggests, however, that
a large-scale forcing primarily excites modes whose phase is aligned with streamlines.
In this configuration, the strain is ineffective and the initial wavenumber evolution is
dominated by refraction:

dk⊥
dτ

= −|∇ζ |
2
, so k⊥ = −|∇ζ |

2
τ. (5.2)

This recovers the Asselin et al. (2020) solution that Thomas et al. (2020) showed roughly
matches the data. Our analysis therefore suggests that it was not ray tracing per se that
caused the mismatch with the data but the assumptions that went into the simplified
solution. (It should be noted that a pure strain field does not produce a compact operator H,
so the machinery based on a discrete set of eigenmodes does not apply. Instead, one should
view the pure strain field as the local behaviour of some more complicated background
flow that is described by a compact operator H. Because ray tracing is inherently local, the
behaviour detailed above would still apply.)

Kunze (1985) considered three-dimensional ray tracing, which allows for both
baroclinicity in the mean flow and a vertical wavenumber for the NIWs that corresponds to
propagation of the waves in the vertical. In this paper we have restricted our attention to a
barotropic mean flow and considered the propagation of a single baroclinic mode, such that
the problem reduces to two-dimensional ray tracing. Exploring how the three-dimensional
ray tracing is related to the full YBJ equation that also allows for baroclinicity in the
background flow is left to future work.

6. Near-inertial wind work

One may speculate that the frequency shifts in the weak-dispersion limit could impact
the energy input into NIWs by the winds. To study this, we need to consider a forced
version of the YBJ equation. So far, we have focused on the problem with a horizontally
uniform initial condition. This was to represent the NIW field excited by the passage of
a large-scale atmospheric storm, and we studied the evolution of this NIW field in the
absence of any further forcing. Real NIWs, in contrast, are continually forced by the winds,
which we now represent by including a horizontally uniform forcing term in the modal
YBJ equation. If we include sources of NIW energy then we must also include the sinks,
such that the wave energy can equilibrate. In the real ocean, NIW energy is primarily
dissipated through mixing. Mechanisms of NIW dissipation are complicated and depend,
among other factors, on the local stratification (e.g. Kunze et al. 1995; Qu, Thomas &
Hetland 2021) and the mesoscale eddy field (Sanford, Ma & Alford 2021; Essink et al.
2022; Thomas et al. 2024b). For simplicity, we model these processes as a linear drag.
In mixed-layer models, a linear drag is often used to model NIW propagation out of the
mixed-layer (see e.g. Pollard & Millard 1970), but in our model vertical propagation is
already accounted for by the decomposition into baroclinic modes. The linear drag in our
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model therefore represents the irreversible sink of NIW kinetic energy due to mixing. With
these alterations, the modal YBJ equation reads

dat =
(
−iωat − rat + Fteift

)
dt, (6.1)

where at denotes the modal amplitude at time t, r is the linear drag coefficient and Ft the
wind forcing projected onto the mode under consideration. We suppress the mode index μ
for now but keep in mind that this equation must be solved for each mode. Note also that
we have re-dimensionalised the equation here. The factor of eift back rotates the forcing to
match the back-rotated description of the NIW evolution by the YBJ equation. To proceed,
we describe the wind by an Ornstein–Uhlenbeck process that satisfies

dFt = −cFt dt + σ dWt, (6.2)

where c−1 is the decorrelation time scale of the wind forcing, σ is the amplitude of the
stochastic excitation and Wt is a Wiener process. The power spectrum of the process Ft is

S(ω) = 2
π

c
c2 + ω2 . (6.3)

For ω � c, the power falls off with frequency as ω−2, i.e. the spectrum is red. We find that
this is a good model of the power spectrum of the wind stress from reanalysis, especially
over the ocean (see Appendix E for more details).

We consider the system spun up from t = −∞, such that it has statistically equilibrated
for all t. This results in the formal solution for the forcing

Ft = σ

∫ t

−∞
e−c(t−t′) dWt′, (6.4)

and the formal solution for the mode amplitude a is given by

at = e−(iω+r)t
∫ t

−∞
e[i( f +ω)+r]t′Ft′ dt′. (6.5)

The NIW kinetic energy equation can be obtained in the usual way by multiplying (6.1)
with a∗

t and adding the complex conjugate. This is allowed because it is the integral of a
Wiener process that appears in (6.1) and not the Wiener process itself. The wind work Γt
arises as

Γt = 1
2

(
a∗

t eiftFt + c.c.
)
. (6.6)

We are interested in the average of Γt over an ensemble of many realisations of the wind
forcing. Let 〈·〉 denote such an ensemble average. Hence, the ensemble average wind work
is

〈Γt〉 = 1
2

(
e[i( f +ω)−r]t

∫ t

−∞
e[−i( f +ω)+r]t′ 〈F∗

t′Ft〉 dt′ + c.c.
)
. (6.7)

The covariance function of the Ornstein–Uhlenbeck process Ft is

〈F∗
t′Ft〉 = σ 2

2c
e−c|t−t′|, (6.8)

so the ensemble average of Γt reduces to

〈Γt〉 = σ 2

2c
c + r

(c + r)2 + ( f + ω)2
. (6.9)

As expected, given the initialisation at t = −∞, the power input is independent of time t.
This equilibrated wind work is balanced by the linear drag, such that the ensemble

1002 A22-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1175


Regimes of near-inertial wave dynamics

averaged kinetic energy in a given mode is finite. From this expression, we can furthermore
see that 〈Γt〉 is smaller for ω > 0 than for ω < 0. This is because the wind forcing has more
power at low frequencies.

We now define Q as the ratio between the equilibrium wind work in the presence of
a mesoscale eddy field to the equivalent wind work in the absence of mesoscale eddies.
Without mesoscale eddies, ψ = 0 and there are no frequency shifts, so ω = 0 for the
uniform mode excited by the wind. The wind work is simply

〈Γt〉 = σ 2

2c
c + r

(c + r)2 + f 2 . (6.10)

We calculate Q as a weighted sum of the ratio over individual modes, where the weighting
is given by the projection Fμ of the forcing onto a given mode μ:

Q =
∑
μ

|Fμ|2 (c + r)2 + f 2

(c + r)2 + ( f + ωμ)2
. (6.11)

Here we restored the subscripts for the modes. This expression depends on the wave
dispersiveness ε2 through Fμ and ωμ. If we make the assumption that the r � c, meaning
that the time scale of NIW dissipation is much longer than the memory of the winds, this
expression reduces to

Q =
∑
μ

|Fμ|2 c2 + f 2

c2 + ( f + ωμ)2
. (6.12)

We use this reduced expression in the following analysis because r � c appears reasonable
and because r would be difficult to estimate.

Modulation of the NIW wind work by mesoscale eddies occurs only for ε � 1. Using the
dipole flow as an example, we calculate Q from (6.12) as a function of c and ε (figure 11).
For large ε, Q quickly approaches unity, regardless of the value of c. For small ε, the
contours of Q become horizontal and there is little dependence of Q on ε. The dependence
is primarily on c with a lower value of c resulting in a higher value of Q, i.e. a more
substantial enhancement of the wind work.

Our framework provides physical motivation for why mesoscale eddies can modulate
the wind work in the weak-dispersion case. Assuming c � f , which is generally the case
for the wind stress over the ocean, we see that the inertial frequency f is in the ω−2 part
of the wind power spectrum. Any process that shifts the frequency of NIWs will modulate
the wind power felt by the waves. Because the wind power spectrum falls off like ω−2,
a shift to lower frequencies will raise the wind power felt by the waves and a shift to
higher frequencies will lower it. This is the essence of (6.12). As we have shown above,
frequency shifts are small in the strong-dispersion limit, and so the waves should feel
similar wind power regardless of the presence of mesoscale eddies. As such, Q is close to
unity in the strong-dispersion limit. In the weak-dispersion limit, in contrast, there can be
significant frequency shifts. A uniform forcing will project onto many modes with a range
of frequency shifts. Due to the curvature of the wind power spectrum, going like ω−2, the
fractional increase in power for negative frequency shifts will be greater than the fractional
decrease in power for positive frequency shifts of the same magnitude. As a result, there
will be a net increase in NIW wind work when summing over all modes (see figure 11(b)
for a schematic). The question remains whether this will be an appreciable effect in the
ocean.
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Figure 11. (a) Ratio Q of NIW wind work in the presence of mesoscale eddies to that without as a function of
the wave dispersiveness ε2 and the wind stress memory parameter c/f . Modulation of the NIW wind work by
the mesoscale eddy field appears only for low ε and c/f . These values correspond to a re-dimensionalisation of
ω by Ro = 0.5. (b) Schematic illustrating the enhancement of NIW wind work in the weak-dispersion regime.
The solid black curve illustrates the wind stress power as a function of frequency on a log-log plot. At the
inertial frequency, the power is rapidly falling off. The circles indicate the modes that a uniform initial condition
projects onto. In the strong-dispersion case, the forcing projects onto a single mode with a small frequency shift.
In the weak-dispersion case, the forcing projects onto a wide variety of modes with large frequency shifts.

We estimate Q from observations. For each location in the ocean, we estimate ε from the
deformation radius and satellite altimetry observations of the eddy field (see Appendix A),
and we estimate c from atmospheric reanalysis (see Appendix E). We calculate the modes
of the dipole flow for a range of ε, which gives us ωμ and |Fμ|2, and we re-dimensionalise
ωμ using the Rossby number Ro = ζ/f calculated from satellite altimetry. We use the
spatial structure of the vortex dipole as a stand-in for the real eddy structure. This provides
an (admittedly crude) estimate of the combined effect of an anticyclone and a cyclone. We
calculate Q by using (6.12) and then interpolating onto the correct ε.
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Our estimate reveals that deviations of Q from unity are weak, at most 5 %. This
effect is entirely concentrated in the western boundary current regions. This is because
the dimensional frequency shift scales with Ro. Over most of the ocean Ro is far too
weak to produce any modulation of the NIW wind work. While this mechanism may
be important for individual NIW events (Conn et al. 2024), it is clear that on average
there is not a significant modulation of the NIW wind work by mesoscale eddies.
The maximum modulation of 5 % is significantly smaller than current uncertainties
in the NIW wind work (Alford 2020). That being said, our approximation of the
wind stress as an Ornstein–Uhlenbeck process is highly simplified. The real forcing is
dominated by intermittent atmospheric cyclones. The linear drag is also an extremely
crude representation of NIW dissipation and should be thought of as nothing more than a
stand-in for a more realistic representation.

7. Limitations of the model

All the limitations of the YBJ model are inherent in our analysis above. Specifically, there
is no feedback of the waves onto the background flow. Xie & Vanneste (2015) extended
the YBJ model by coupling it to a quasi-geostrophic model for the background flow that
included wave feedbacks. These wave feedbacks can significantly alter the characteristics
of the background flow (Xie & Vanneste 2015; Wagner & Young 2016; Rocha et al. 2018).
Kafiabad et al. (2021) showed that this wave feedback can cause frequency shifts in the
NIWs. Furthermore, Kafiabad et al. (2021) also noticed that strong wave feedbacks can
generate instabilities that cause small-scale structure in the vorticity field.

The scaling assumptions of the original YBJ equation should be kept in mind in the
context of the asymptotic expansions performed above. The Rossby number is Ro = Ψ/fL2

and the Burger number is Bu = λ2/L2, such that ε2 = Bu/Ro. The YBJ equation arises
asymptotically in the limit where Bu → 0 while Bu/Ro is kept fixed (see Asselin & Young
2019), so ε � 1 and ε � 1 do not violate the YBJ scaling.

Thomas et al. (2017) conducted a detailed study of the evolution of NIWs in different
scaling regimes. They considered a ‘very weak-dispersion regime’ where Bu ∼ Ro2 that
is equivalent to ε2 ∼ Ro. An additional term arises compared with the YBJ equation,
but they found the YBJ equation to still work well in simulations. They also considered
a ‘strong-dispersion regime’ where Bu ∼ 1. In this regime they found a leading-order
uniform NIW solution, but also with the excitation of super-inertial frequencies that are
not captured by YBJ. The frequency shift of the uniform mode is as predicted by YBJ.
Another way to improve on the YBJ model is the YBJ+ scheme of Asselin & Young
(2019). It has a dispersion relation that remains accurate over a wider range of Bu, and it
has desirable numerical properties. The YBJ+ equation is not a Schrödinger equation any
more, however, and we do not pursue its analysis here.

Throughout this paper we have dealt with the case in which the background flow
does not evolve. In the ray tracing framework, the background flow could be allowed
to evolve. The Hamiltonian operator would be time dependent, but the equations can
still be integrated along rays. For our analysis of eigenmodes to be applicable to the
time-dependent case, the evolution of the background flow should be adiabatic, i.e. it
should be slow compared with the wave evolution. The time for eigenmodes to dephase
depends on the difference between their frequencies. In the strong-dispersion case the
frequency difference between the leading-order eigenmode and the higher eigenmodes is
O(ε2), meaning that the time to dephase should be small relative to the time scale for
evolution of the background flow. In the weak-dispersion limit the eigenvalues become
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ever-closely packed, meaning the time scale for dephasing can become large. For the
adiabatic assumption to hold, an invariant torus should deform much more slowly than
the time it takes a particle to traverse the torus. If the time taken to traverse the torus is
given by the advective time scale, then these two time scales are formally the same order.
The adiabatic assumption will only hold if there is a symmetry that causes the torus to
persist for a longer time scale. The dipole vortex is an extreme example of this where the
tori never deform, yet the advective time scale is finite. In the ocean, eddies often persist as
coherent features for times much longer than the advective time scale. As such, we expect
that the weak-dispersion results to continue to provide insight even in the time-dependent
case.

We have also assumed that the background flow is barotropic. This allows the YBJ
equation to be expanded into the baroclinic normal modes. If the background flow is
baroclinic, such a decomposition is not possible and the modes become coupled. This
coupling of the modes means that the YBJ equation no longer reduces to the Schrödinger
equation. This does not necessarily destroy the quantum analogy, as the techniques
employed here may still be applicable with some modifications. We leave an exploration
of these issues to future work.

Finally, we note that in the real ocean, vorticity variance increases at smaller scales.
One may worry that the frequency shifts would diverge with increasing resolution. While
a detailed discussion of this issue is beyond the scope of this paper, dispersion should have
a regularising effect on small-scale vorticity, which leaves the problem well-posed.

8. Conclusions

In the YBJ framework the evolution of NIWs in the presence of a mesoscale eddy field is
governed by the wave dispersiveness ε2 = fλ2/Ψ . The limit of ε � 1 corresponds to the
strong-dispersion limit and ε � 1 corresponds to the weak-dispersion limit. Both of these
limits are relevant for the ocean, as the wave dispersiveness decreases with vertical mode
number and the strength of mesoscale eddies.

The YBJ equation is a Schrödinger equation, with the YBJ operator playing the role
of the Hamiltonian operator in quantum mechanics. As is conventional in quantum
mechanics, the evolution of NIWs can be described using the eigenmodes of the YBJ
operator and their eigenvalues, which determine the frequency shift away from the
inertial frequency. Perturbation methods from quantum mechanics yield insight into YBJ
dynamics and its relationship to the ray tracing equations of Kunze (1985).

In the strong-dispersion regime ε � 1, perturbation theory yields closed-form
expressions for the NIW modes. To leading order, a spatially uniform forcing excites
a spatially uniform NIW mode. This mode is modulated by an order ε−2 perturbation
proportional to the streamfunction of the eddy field. The frequency shift is also of
order ε−2 and proportional to the average kinetic energy of the eddies. Both of these results
recover predictions from Young & Ben Jelloul (1997) through an alternative approach.
The same approach also yields expressions for the modes that are not spatially uniform to
leading order. The degeneracy of these modes at leading order is lifted at higher order, and
the frequency shifts and spatial structures can be determined. Wind patterns associated
with sharp atmospheric fronts may excite these modes more strongly than the uniform
forcing assumed throughout this work (e.g. Thomas 2017).

In the weak-dispersion regime ε � 1, the YBJ equation is amenable to WKB analysis.
In simple (separable) background flow geometries, this allows the straightforward
calculation of eigenmodes and their frequency shifts, which are excellent approximations

1002 A22-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1175


Regimes of near-inertial wave dynamics

of the exact frequency shifts even for modestly small ε. More generally, the
weak-dispersion limit of the YBJ equation corresponds to the classical limit of quantum
mechanics. The YBJ equation reduces to the ray equations of Kunze (1985), the equivalent
to the corresponding classical Hamiltonian dynamics. The semi-classical EBK analysis
allows the calculation of frequency shift for non-separable background flows for the
regular part of the spectrum, which again are in excellent agreement with the full shifts.
The emergence of the ray equations in the classical limit furthermore suggests that they
can be applied if dispersion is weak, whether or not the forcing has a large horizontal scale.
The spatial scale separation underlying the ray equations emerges because a uniform initial
condition projects onto many modes, and these modes exhibit small-scale structure.

The frequency shift of NIW modes away from the inertial frequency implies that the
NIW wind work can be modulated by mesoscale eddies. We quantify this using Q that
measures the ratio of the NIW wind work in the presence of mesoscale eddies to that
without mesoscale eddies. This modulation arises due to the curvature of the wind power
spectrum, which enhances the power input into modes with a shift to lower frequencies
more than it suppresses the power input into modes with a shift to higher frequencies. On
average, this effect is weak in the ocean, however, with the modulations always being less
than 5 %.

Supplementary material. Code to numerically solve the two-dimensional eigenvalue problem is available
at https://github.com/joernc/ybjmodes. The sea surface height (SSH) data are available from the E.U.’s
Copernicus Marine Service at https://doi.org/10.48670/moi-00148. The ERA5 reanalysis data are available
from the Copernicus Climate Change Service (C3S) Climate Data Store at https://doi.org/0.24381/cds.
adbb2d47. The ECCO density data are available from https://doi.org/10.5067/ECG5D-ODE44.
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Appendix A. Calculating the wave dispersiveness

Here, we describe the calculations used to estimate the wave dispersiveness ε2 = fλ2/Ψ
from observations. At each location, we estimate the set of deformation radii λ from
hydrography and the characteristic strength of the streamfunction Ψ from altimetry.

Following Smith (2007), we calculate λ by solving the baroclinic eigenvalue equation
using finite differences. We perform this calculation using the climatology from the
estimating the circulation and climate of the ocean (ECCO) state estimate version 4
release 4 (Forget et al. 2015; Fukumori et al. 2020). We solve the baroclinic eigenvalue
equation at each horizontal grid cell on the ECCO grid to obtain maps of the deformation
radii. We display ε2 for the lowest four baroclinic modes only, for which the numerical
approximation has a minimal effect.

To calculate Ψ , we use sea surface height (SSH) observations from the data unification
and altimeter combination system’s delayed-time 2018 release Taburet et al. (2019). The
SSH is provided at a (nominal) (1/4)◦ and daily resolution. We calculate a geostrophic
streamfunction using ψ = gη/f , where η is the SSH and f is the (now latitude-dependent)
Coriolis frequency. We take observations from 2007 to 2022 and estimate Ψ as the
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root mean square ψ over that period. Again, we are assuming that the streamfunction
is barotropic.

Appendix B. Numerical solutions to the eigenvalue problem

To numerically solve the eigenvalue problem (2.4), we discretise the Hamiltonian
operator H using finite differences. We use a fourth-order central difference scheme
for the Laplacian operator in the dispersion term. For the advection term, we employ
the fourth-order enstrophy-conserving scheme of Arakawa (1966), which preserves the
Hermitian nature of the operator and translates into energy conservation in this context.
In the notation of Arakawa (1966), we employ 2J1 − J2, where J1 = 1

3(J
++ + J+× +

J×+) and J2 = 1
3(J

×× + J×+ + J+×). For the refraction term, we evaluate ζ analytically
at each point, although in general it could be calculated from the streamfunction using
finite differences as well.

We use a spatial resolution of up to 1024 × 1024 points and solve for the lowest
eigenvalues using Lanczos iteration. The resolution is chosen by checking the convergence
of the eigenvalues. The number of eigenvalues solved for depends on the value of ε, which
controls how densely packed the eigenvalues are and, thus, how many must be computed
to find all eigenmodes that a uniform forcing projects onto substantially. We ensure a large
enough number of eigenvalues are computed by summing the square of the projection
coefficients.

Appendix C. Analytical solutions to shear flow WKB integrals

Here, we provide analytical solutions to the WKB problem with the sinusoidal shear flow.
First, we rewrite the potential as

V(x) = Am cos (x + δm)+ ε2m2

2
, where Am =

√
m2 + 1

4
and tan δm = −2m.

(C1a,b)

If m > 0 and arctan corresponds to the principal value, then it follows that δm = π +
arctan (−2m). Because the domain is periodic, we can consider any interval of length 2π.
For convenience, we choose [−π − arctan(−2m),π − arctan(−2m)]. We can now make
the change of variable x′ = x + arctan(−2m). The transformed potential is

V(x′) = ε2m2

2
− Am cos(x′). (C2)

With the potential in this form, the WKB integral (4.6) can be evaluated in terms of the
elliptic integral of the second kind E(ϕ|k2):

S0 = ±2
√

2iε

√
ω − ε2m2

2
+ Am E

⎛
⎜⎜⎝x′

2

∣∣∣∣∣∣∣∣
2Am

ω − ε2m2

2
+ Am

⎞
⎟⎟⎠ . (C3)
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We can obtain an equation for the eigenvalues from (4.13). Letting x′
1 denote the positive

turning point given by

x′
1 = π − arccos

⎛
⎜⎜⎝
ω − ε2m2

2
Am

⎞
⎟⎟⎠ , (C4)

we obtain

E(ϕ|k2) =
επ

(
n + 1

2

)

4

√
2

(
ω − ε2m2

2
+ Am

) , where ϕ = x′
1

2
and k2 = 2Am

ω − ε2m2/2 + Am
.

(C5a,b)

This is a transcendental equation that can be solved numerically for the eigenvalues ω.
The eigenvectors can be normalised by requiring

∫ π

−π

[φ̂n(x)]2 dx = 2π. (C6)

Letting C be the normalisation constant, we obtain

8C2√
ω − ε2m2

2
+ Am

F(ϕ|k2) = 2π, (C7)

where F(ϕ|k2) is the elliptic integral of the first kind (see Bender & Orszag 1999).
The projection of a uniform forcing onto a given mode with even symmetry about the

bottom of the potential is

an = 1
2π

∫ π

−π

φ̂n(x) dx. (C8)

This integral can be evaluated (again see Bender & Orszag 1999) as

|an|2 = 1√
Am − ω + ε2m2

2

ε√
2F(ϕ|k2)

. (C9)

Appendix D. Further details about the EBK method

We principally follow Percival & Pomphrey (1976) to calculate the invariant tori satisfying
quantisation conditions and the associated EBK predictions for the eigenvalues ω. We
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write the angle Hamilton equations, which are partial differential equations that describe
the invariant torus:

ν
∂x
∂θ

+ μ
∂x
∂ϕ

= ε2k + u, (D1)

ν
∂y
∂θ

+ μ
∂y
∂ϕ

= ε2l + v, (D2)

ν
∂k
∂θ

+ μ
∂k
∂ϕ

= −
(

k
∂u
∂x

+ l
∂v

∂x
+ 1

2
∂ζ

∂x

)
, (D3)

ν
∂l
∂θ

+ μ
∂l
∂ϕ

= −
(

k
∂u
∂y

+ l
∂v

∂y
+ 1

2
∂ζ

∂y

)
. (D4)

The quantisation conditions can then be written as integrals over the angles θ and ϕ:

∫ (
k
∂x
∂θ

+ l
∂y
∂θ

)
dθ = 2πm,

∫ (
k
∂x
∂ϕ

+ l
∂y
∂ϕ

)
dϕ = 2π(2n + 1 + m). (D5a,b)

The integration along θ passes around the hole of the torus (like contour C2 in figure 9).
The integration along ϕ passes through the hole twice and also around the hole once, so
we double the radial phase increment 2π(n + 1

2 ) and add the azimuthal phase increment
2πm in the second quantisation condition. We average these numerical integrals over the
respective other coordinate to increase the accuracy.

We discretise the above equations by dividing the [0, 2π] intervals that the angles θ
and ϕ vary over using 64 points and approximate derivatives using an eighth-order finite
difference scheme. We initialise the calculation with θ = −1

2 , ϕ = 1
10 ,

x = 1
2 (1 + cosϕ) cos θ, y = 1

2 (1 + cosϕ) sin θ, k = −ε−1 sinϕ cos θ,

l = −ε−1 sinϕ sin θ,

}
(D6a–d)

for the (n,m) = (0, 0) torus and apply Newton iteration to satisfy the above equations.
We determine ω by applying the dispersion relation at each point of the torus and averaging
over all grid points. We then change the quantum numbers to other values and start the
Newton iteration from the previously found torus, using iterations at intermediate values
if needed.

Appendix E. Estimating the decorrelation time of wind stress

Here, we describe the calculations used to estimate the decorrelation time c−1 of the wind
stress. For the wind forcing, we use the European Centre for Medium-Range Weather
Forecasting ERA-5 reanalysis (Hersbach et al. 2020). For the calculations below, we use
data from 2015 to 2020. At each grid cell, we use the 10 m zonal (uw) and meridional
(vw) winds with hourly resolution. Following Pollard & Millard (1970) we convert this to
a wind stress using a bulk aerodynamic drag formulation. The time series at each location
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is used to calculate a power spectrum of the wind stress. The decorrelation time scale is
obtained by fitting the following model to the estimated spectrum:

S(ω) = A

1 +
(ω

c

)s . (E1)

Here A and s are additional fitted parameters that we do not use here. Over the ocean
s = 2 is a reasonable approximation, which motivates our use of the Ornstein–Uhlenbeck
process above.
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